EECS - DLCV

LAVI

Clustering

  • 一次給你 n 筆資料,把這 n 筆資料分成 k 堆

  • High within-cluster (intra-cluster) similari

    • 同一堆內的影像越像越好
  • Low between-cluster (inter-cluster) similarit

    But Similarity is NOT Always Objective

  • Similarity

K-Means Clustering

  • Input: N examples {x1, . . . , xN } (xn ∈ RD ); number of partitions K
  • Initialize: K cluster centers μ1, . . . , μK . Several initialization options:
    • Randomly initialize μ1, . . . , μK anywhere in RD
    • Or, simply choose any K examples as the cluster centers
  • Iterate:
    • Assign each of example xn to its closest cluster center
    • Recompute the new cluster centers μk (mean/centroid of the set Ck )
    • Repeat while not converge
  • Possible convergence criteria:
    • Cluster centers do not change anymore
    • Max. number of iterations reached
  • Output:
  • K clusters (with centers/means of each clust

L2 可能會出現的問題..

因此他 Sensitive to initialization

  • Limitations
  • Sensitive to initialization → multiple trials -> majority votes
  • Sensitive to outliers → L2 -> L1
  • Hard assignment only → fuzzy k-means, etc

soft assignment

  • 每個點可以被分配到多個不同類別,且分配基於概率或權重
  • 軟分配讓每個點以不同程度屬於不同的類別或群,不僅僅只是一個類別

Linear Classifier

  • Consider that we have 10 object categories of interest
  • E.g., CIFAR10 with 50K training & 10K test images of 10 categories. And, each image is of size 32 x 32 x 3 pixel

32 x 32 -> spatical resol
3 -> RGB channel

f(x, W):input channel W: classifier x: input img 32 x 32 x 3 = 3072 b: bias

可以專注在重要的特徵上,不用 3072 全計算

假設 y4 會期望特別高,y4 is ground truth of y

期望 cat score 特別高

input vector 跟相對應類別狂做內積的結果

得到每個類別模糊的平均行塊

距離和相似度是相反,相對應的概念
算距離不好算,可以算相似度,反之

Loss Function

計算 W 中每個 x_i 和 y_i 的距離 (和標準答案的距離)

  • Softmax

Activaction Function

  • Sigmoid Function

Training a Single Neuron

可以和 p24~p26 做對照

為了防止 overfitting 會加 regularization